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Flapping Wing MAVs

u Insects ARE highly successful autonomous MAVs

u They are specialized for flight at this size range, where 
conventional wings in steady motion perform badly

u Flapping wings can generate 2-3X more lift - the extra lift 
capacity is highly desirable for MAVs

u ONLY a flapping design can exploit the high-lift/high-drag 
aerodynamic mechanisms found in insect flight

u After 350 million years of evolution, they have probably 
found good solutions for 

– Kinematics
– Wing design
– Control Systems





High-Lift Mechanisms in Insect Flight

u Delayed, or Dynamic, Stall

u Rotational Mechanisms

•The ‘Fling’ et al. to create high circulation 
during the rotational phases of the wingbeat.

•dα/dt at the 3/4 chord towards the end of the
wingbeat (quasi-steady rotational model) to 
sustain or augment high circulation create by 
another mechanism.



Dynamic Stall –

a conventional, 
unsteady high-lift 
mechanism

Extra lift is created by a 
leading-edge vortex 
when the wing is moved 
at high angle of attack.

But the LEV is unstable, 
and the wing stalls after 
3-4 chords of travel.



Hovering with an Inclined Stroke Plane

Episyrphus balteatus

Hoverflies, dragonflies, 
small birds and bats 
rely on dynamic stall on 
the downstroke (red) 
for weight support



Fling Mechanism

Generates high lift for 
tiny insects, once 
thought to ‘swim’ 
through the air. Also 
found in some moths, 
butterflies, etc. 

Mechanical wear and 
tear of the wings limits 
its usefulness.

(Weis-Fogh, 1973)



How Do Most Insects Fly?



Hawkmoth Manduca sexta



Smoke Flow Visualization

(with Sandy Willmott and Adrian Thomas)

Small LEV



The Flapper: x 10 Mechanical Model

(with Coen van den Berg)



The Flapper



Mid-Downstroke



End of Downstroke



Velocity Components of Spiral LEV

Swirl velocity Vθ    θ    

Axial velocity Va

Helix angle is 46 degrees,
so Vθ θ ≈≈Va



Dynamic Stall with a Spiral LEV

u Spanwise flow stops 
early separation of 
the LEV

u The resulting Spiral 
LEV accounts for 
most of the lift

u L/D ratio is still awful, 
typically less than 2

u It has not been 
reported for rotors 
and propellers



Delta Wing Analogy

Velocity components 
relative to leading edge



Propeller Experiments

uPropellers provide an analogy for 

‘translation’ during the flapping 

phase of the cycle.

uFlow visualization is easy

uThrust and torque measurements for 

force coefficients



Spiral LEV on Laminar Propellers

α = 0α = 0
α = 35α = 35

(with Jim Usherwood)

A quasi-steady rotary 
wing phenomenon, not 
an unsteady mechanism



‘Early’ Polar 
for a Range 
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Extra Drag as well as Extra Lift

FN

FN sin αα

FN cos αα

αα

U

L/D ≈≈ cot α α < 2

Leading-edge separation 
causes loss of leading-
edge suction.

The normal force resulting 
from low pressure in the 
LEV creates extra lift.

But it also has a large drag 
component, giving a poor 
lift-to-drag ratio.



Conclusions for Laminar Propellers

u Delayed Stall can be delayed indefinitely 

u Polars are remarkably similar for different 
cambers, twists, aspect ratios, etc. 

u Leading-edge separation causes loss of leading-
edge suction, and the normal force dominates.

u Lift-to-Drag ratio is primarily determined by the 
angle of attack, and is less than 2.

u High drag is a necessary adjunct to high lift.

u The wing motion must be adjusted to exploit the 
high resultant force, and not the high lift per se.



Inclined Hovering

Lift and Drag on the
downstroke
support the 
weight

Downstroke Force

LiftDrag

Weight

L/D = 1.7

No wasted power –
it all goes into 
weight support



Hovering Flapping Flight –
a MAV Design Study

uSimple design equations

uA practical experimental testbed

uPendulum stability

uMaximum lift coefficients

uMaximum power



Assumed Values

uSimple harmonic motion for the wings

uFlapping amplitude is 120 degrees

uAspect ratio = 7

uCentroid of wing area at 0.5 R

uCL = 2

uCL/CD,pro = cot (αα) = 1.7



Mass Supported
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Aerodynamic Power (mW/g)
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Mass Supported
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Design Conclusions

u Longer wings are better - much better

u The power requirements are achievable (just!)

u For reasonable mass support (e.g. about 50 g),  
Re is around 50,000

u Will the spiral LEV mechanism work at high Re?



High-Re Propeller Rig

Will the spiral LEV mechanism work at high Re?



Means of All Wings, Re = 20,000-50,000
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Lift-to-Drag Ratio
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Conclusions for High-Re Propellers

u Leading-edge separation occurs: leading-edge 

suction is lost, and the normal force dominates

u The separated shear layer becomes turbulent at 

Re>10,000

u Spanwise flow is destroyed by turbulent mixing

u Results are consistent with periodic growth and 

shedding of an unstable LEV

u Conventional wings with attached flow give 

higher lift



Hummingbird Wing Models at Re=20,000
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Hummingbird Wing and Models at 
Re=5000
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